Durham-Edinburgh eXtragalactic Workshop XIV

IfA Edinburgh

# Cosmology with weak-lensing peak counts

Chieh-An Lin

January 8<sup>th</sup>, 2018 Durham University, UK

## Outline

Motivation Why do we study WL peaks?

Problems How to model WL peaks?

Methodology A stochastic approach

Results Cosmological constraints and others

Perspectives Improvements and new physics



#### General relativity



#### Gravitational lensing



(Source: ALMA)

**Unlensed** sources

. ... . Weak lensing

## Gaussian information



#### But the lensing field is highly non-Gaussian

## Weak-lensing peak counts



- · Local maxima of the projected mass
- Probe the mass function
- Constrain cosmology



## Dealing with selection function

Projection effects, irregular sampling, noise, ...

Early studies Count only the true clusters with high S/N (Kruse & Schneider 1999, 2000; Reblinsky et al. 1999)

Recent studies Include the selection effect into the model

- Analytical formalism
- N-body simulations
- · Fast stochastic model (this work)

## Difficulties

#### Analytical models

- Fan et al. (2010) and series; Shirasaki (2017)
- Difficult to handle masks and photo-z bias
- · Difficult to include baryons or intrinsic alignment
- Need external covariances

*N*-body simulations

- Dietrich & Hartlap (2010) and series; Kratochvil et al. (2010) and series
- Very expensive time costs



How to model properly weak-lensing peak counts? How to resolve the trade off between flexibility and speed? What cosmological information can we extract from peaks?

## A new model



A stochastic model to predict weak-lensing peak counts

Lin & Kilbinger (2015a)

## **Advantages**

Fast

Flexible

Full PDF information



#### Fast

Only few seconds for creating a 25-deg<sup>2</sup> field, without MPI or GPU

Flexible

Full PDF information

## **Advantages**

#### Fast

Only few seconds for creating a 25-deg<sup>2</sup> field, without MPI or GPU

#### Flexible

Straightforward to include observational effects and additional features (mask, photo-z bias, IA, baryons, ...)

Full PDF information

## **Advantages**

#### Fast

Only few seconds for creating a 25-deg<sup>2</sup> field, without MPI or GPU

#### Flexible

Straightforward to include observational effects and additional features (mask, photo-z bias, IA, baryons, ...)

Full PDF information

Estimate covariances easily Go beyond the Gaussian likelihood assumption

## Validation

We compare the following four cases:

- Case 1 Full *N*-body runs
- Case 2 Replace *N*-body halos with NFW profiles of the same mass
- Case 3 Profile replacement and position randomization
- Case 4 Our model

to test two hypotheses:

| Comparison 1 & 2 $-$ | Ignore unbound matters & halo asphericity |
|----------------------|-------------------------------------------|
| Comparison 2 & 3 $-$ | Absence of the spatial correlation        |
| Comparison 3 & 4 —   | Mass function                             |

Lin & Kilbinger (2015a)

#### Validation







## Cosmology-dependent covariance

$$L = \operatorname{cst} + \Delta \boldsymbol{x}^T \boldsymbol{C}^{-1} \Delta \boldsymbol{x}$$

cg = constant covariance svg = varying covariance

|     | cg | svg |  |
|-----|----|-----|--|
| FoM | 46 | 57  |  |

Lin & Kilbinger (2015b)







#### Combined vs separated

The combined map creates degeneracy which elongates the contours.

Lin et al. (2016)

## Data from three surveys

| Survey     | Field size          | Number of | Effective density |
|------------|---------------------|-----------|-------------------|
|            | [deg <sup>2</sup> ] | galaxies  | $[deg^{-2}]$      |
| CFHTLenS   | 126                 | 6.1 M     | 10.74             |
| KiDS DR1/2 | 75                  | 2.4 M     | 5.33              |
| DES SV     | 138                 | 3.3 M     | 6.65              |







#### Cosmological constraints

Width:  $\Delta \Sigma_8 = 0.13$ Area: FoM = 5.2

Lin (2016)

# Perspectives

## **Improvements**

# Account for halo clustering



# Extend to redshift space distortions



Peacock et al. (2001)

(Source: HST)

## More physics

#### Massive neutrinos

<2.2 eV/c<sup>2</sup>

1/2 electron neutrino

<0.17 MeV/c<sup>2</sup>

muon

neutrino

L

1/2

e

1/2

<15.5 MeV/c<sup>2</sup>

tau

neutrino

Modified gravity





## Summary

- Peaks provide non-Gaussian
  information
- A stochastic model to predict WL peak counts
- Fast, flexible, full PDF information
- A public code: Camelus@GitHub



#### Collaborators:

Martin Kilbinger (CEA Saclay) François Lanusse (CMU) Austin Peel (CEA Saclay) Sandrine Pires (CEA Saclay)

#### References:

| [1410.6955]  | [1612.02264]   |
|--------------|----------------|
| [1506.01076] | [1612.04041]   |
| [1603.06773] | [1704.00258]   |
| [1609.03973] | http://linc.tw |

## Backup slides



## Approximate Bayesian computation



Distribution of accepted  $\pi = \text{prior} \times \text{green area}$ 

- - $\approx$  prior  $\times 2\epsilon \times$  likelihood
  - posterior  $\propto$

## Degeneracy with $w_0^{de}$



Liu X et al. (2016)

 $f_{R0}$  constraints





## Other studies



A

Liu X et al. (2015)

